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Abstract

This paper describes a statistical interpolation method which may incorpo-
rate the spatial information of forecast error of sea waves by analytical correla-
tion functions. The basic assumptions are that the correlation of observed data is
random and the cross-correlation of observation between wind and waves is inde-
pendent. Based on observed data, the analysis shows that there exists the same
statistical property for both hindcast error and forecast error. The least-square
technique is used to fit isotropical and anisotropical functions, which may be used
for sea wave data assimilation. The Fourier transform of correlation function,or
wave number spectrum, is used to indicate the contribution of correlation to the
interpolation and to determine the truncation length of the correlation.

*On leave of the National Research Center for Marine Environment Forecasting, Beijing, China
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1 Introduction

For most operational real time forecast wave models, the initial wave fields is calcu-
lated from the wind fields. Except for the physical and numerical properties of wave
model itself, the initial wave fields and its forecast results are mainly dependent on
the accuracy of meteorological model. Data assimilation is one of the most important
ways to improve the accuracy of the wave model. The optimum interpolation scheme
developed by Gandin (1963) was one of the immediate insertion of combining observa-
tion and forecasts data, and the main emphasis of this scheme is on the determination
of covariance or correlation by which the forecast error in the analysis point is best
evaluated by the linear combination of observation minus forecast error in surrounding
points.

One of the most serious problems in the wave data assimilation is to obtain covariance
or correlation function which needs spacial structure of statistics of observation data of
sea waves. The visual data from commercial ships, most of which concentrate on ship
routes, has been verified unreliable and unfortunately, there is a few reliable observed
data in offshore sea area and nearly no reliable data on the vast ocean area. This
is the main difficulty of the sea wave data assimilation scheme based on the present
observation method.

However, the launch of satellites such as ERS-1 in the near future will provide us a
wealth of data, e.g. the waves and winds, and it will allows us to do operational ocean
wave data assimilation.

The purpose of this paper is to obtain analytical correlation functions and a reasonable
truncation length of correlation. The plan of the paper is as follows: in section two,
a multivariate structure, which is of vital importance to estimate the forecast error of
wave model, is derived, in section three, the attention is on the autocorrelation based
on hindcast minus forecast error rather than observation minus forecast. In section
four, analytical correlation functions with isotropy and anisotropy are fitted to a set of
sample data, and in section five,the analysis of wave number spectrum and its relation

with interpolation are discussed. The conclusions are presented in section six.



2 Data assimilation equation with multivariables

The main purpose of data assimilation is to seek an optimal estimation of forecast
error at an analysis point by a linear combination of the forecast error in surrounding
points, so that the analysed fields may be used as an initial fields for next forecast
run. For wave model data assimilation, the wave height error of the model first guess
not only relates to the error of wave height in surrounding points, but also relates to
an inaccuracy wind forecast. The analysis can be improved by use of a multivariate
assimilation equation, suggested by Rutherford (1973) and Thiebaux (1974), in which
distinct but correlated variables, such as wave heights and friction velocity, were used

simultaneously. If we only concentrate on the spatial interpolation problem at the same

time, the equation may be written as follows:

(Lh-Lr-gmi) 1))

where h is wave height and wu, is friction velocity of wind, the superscripts @, f and o
denote analysis, forecast and observed variables, the subscripts k,[ denote the analysis
and observation points (I = 1.2, ...m) respectively, [a]y; is a 2 x 2 matrix with four

weights which are determined from the requirement of minimum analysis error. If we

Z={Z*} (2)

where Z is 1 x 2 vector, using superscript ¢ to denote "true’ value, and if we introduce
8

introduce the following notation :

the notations:

Ey =7 — Z¢ analysis error (a)
De! =Z' — Z'  forecast error (b)
De® =2' — Z° observation error (¢) 3
Der =2°* — Z! analysis — forecast error (d) (3)
De; = Z°— 277 observation — forecast error (e)
Ay = [a]ey (f)

where A are a matrices, each of them has 2 x 2 weights, then Eq. (1) may be written

as:

Dey. = (Axy)" Dey (4)
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where T' denotes transpose of matrix. Since we don’t believe that the observation is
perfect, we need to introduce the ”true” value in Eq (4) with aid of Eq (3a). After

taking the square of it and then taking ensemble average, using Eq. (3), we have
E; =< (Def)’* > —2(Ay,) < DeDef > +(Aw))T < Del Del + De¢De2 > A;i  (5)

The optimum interpolation requires the error E?} to be minimum,which results in the

condition that the derivative of E? with respect to Ay, is zero. One arrives at
Ay = M7 [DyI" (6)

where M is a | x | matrix, Dy, is 1 x 1 vector, each of them contain 2 x 2 weights,

-

M=Ci;, (a) (7)

D=Cyi. ()

Here C'; is error residual matrix of covariance of ’true’ value minus forecast in obser-

vation point pairs,

Cis = (<(h‘ h')i (Bt —h); > < (Bt — hI); (u @®)

< (h* = hf); (ut —uf);> < (ut —uf); (ut —uf),->

* o~

|

:
* e
~—

.

\%

SN—

+ 6ij<(ht — 2> 0
0 6; < (uf—w)?2> )

where § is a dirac delta function. Finally Cy is covariance between observation and

analysis point pairs,

_ [ < =hI) (B = k)i > < (B = hF) (ut —ud); >
C'k,i—( <(h‘—hf)k(u P—ul)i > < (ut —uf)k (ul —uf) > )

(9)

We have assumed here that the observation error is random and independent for differ-
ent observation points, and the observation error of winds and waves are uncorrelated.

Eq. (4) with the weights coefficient A;,; given in Eq. (6) may be represented by
Dey = CTDyy (10)

where C = M~ De, is independent of the analysis point k and may be calculated once

for all points. The covariance in the Eq. (8) and Eq. (9) only consider the wave height
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and friction velocity. However, direction of wave propagation has important relation
with the wave height error of the first guess. For example, in case of swell, if there is
a swell source at point k, wich propagates to the point i and J at the seem time, the
error at point ¢ and j then is strongly correlated and its magnitude will depends on
the propagation direction of the swell.

Although many variants will contribute to the wave height error in the first guess
field, for simplicity, the covariance between wind and wave will be neglected in order
to obtained an analytical correlation function for wave heihgt. We have to point out
that this approximation has an obvious shortcoming because for a reliable wave model,
such as th third generation wave model, where the source terms in the wave evolution
equation have been parameterized adequately, the forecast error of wind sea will be
mainly caused by the error of forecast wind. The other approximation is that the
covariances in Eq. (8) and Eq. (9) is not strict, we have to take < De >/ = <

h* — hf >= 0 when we evaluate an analytic correlation function. This means that a

statistic method is used to evaluate the covariance.

3 Statistical structure of the auto-covariance of
wave forecast error

We denote that S is the sum of prediction and observation standard deviations. rii(z)

is autocorrelation between two points i and 7y
C,"j - S;T,'J((I))Sj . (11)
If there is only one observation point and this point is an analysis point, then the
matrix C in Eq.(10) may be written as:
C=M"De;= M (h° - rY); , (12)
where
M=(<(h=h)l>4<(ht- h°)? >) (13)
Then Eq. (10) may be written in the form

< (h* = h*)? > (ke — Bf);

e _ pfy. —
(h = B < (ht=hf)? > + < (bt — ho)? >

(14)
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= r(@)(h" - )

Because of the observation error introduced in the interpolation equation, the auto-

correlation r;(x) in the analysis point is not equal to 1, but smaller than 1. Hence, we

can express the correlation as follows: if i is equal to Js

(o (Sp)E (Sy)?
)= B = Gt G (15)
and if ¢ is not equal to j then
ri(e) = ¢ 1 = < (De/~ < De >7); (De— < De >1); > . (16)
15

Here S, and S, are forecast and observation standard errors respectively, and we have

implicitly assumed that
<De>=0, (17)

Eq. (3b) in section two may be written as:
De; = (k' — h%); + (h° = h%); + (h® — h'); = Dh® + Dh? + Dh! | (18)

The analysis of forecast error covariance < (h*—h{);(ht—h/ ); > using statistical method
needs a sufficiently long period of observations data and long period of forecast run.
Since there is a only few wave observation data, the more desirable solution to this
problem is therefore to express the covariance in term of hindcast minus forecast error.
Table 1 shows some results of statistical properties of wave hindcast and forecast, from
which we may infer that hindcast and forecast bias are more or less the same, but the
rms error and scatter index of forecast increase compared to the hindcast by a factor
of 0.8 for + 24 forecasts on average. The analysis above shows that as the error of
hindcast minus forecast is positive, the error sign of observation minus hindcast is the
same, and the ratio of the both error is more or less the same in a statistical sense.
Hence one may conclude that the statistical properties are the same for both hindcast
and forecast errors, different windfields, such as analysed winds and forecast winds,
don’t change the statistical structure of wave forecast error. Then, as the wave model

has stationary statistics, we may assume that
(Dh?— < Dh >*); + (Dhf— < Dh >7); = b. (Dh/— < Dh >1); (19)
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Eq. 16 then may be written as:

1 N
rij(z) = TSN > [(Dhh— < DR >T),(Dhi— < DR >7); 1. (20)
] J m=1
here N is total accumulation of individual hindcast and forecast runs, and for simplic-
ity the constant b is taken as 1. < Dh >/ in Eq. (20) is ensemble average of error
accumnulation of forecast deviated from hindcast, Dh{, is forecast error for every indi-
vidual forecast and hindcast run. The observation error and hindcast errors contained
in the standard deviation of forecast error are determined as follows: since we never
know the ’true ’ wave height , as shown in Fig. 1, we assume that the observed wave -
height oscilates around the ’true’ value,hence a moving average in time is used.
_ 1 t=+3
Hi=— Y (H), m=1 (21)
m 1=-3

and that the measured value deviates from this moving average by

DH; = (H; - H,)/(H;), (22)
and
<DH >=0.0, (23)
The normalized standard deviation is
, —
S, = I Z(DH.-— < DH >)?, (24)
=1

here N is total wave record. This normalized standard deviation S, is similar in statis-
tical sense to the scatter index used in Table 1. From 286 successive wave records,the
normalized standard deviation is 0.04, which is nearly one nineth of scatter index for
+24 forecast. Here the calibration error of wave instrument is neglected. The standard
deviation of wave forecast error obtained from several observation points in the North

sea listed in table 1 is calculated by

S, =1/< (DH;— < DH >)? > (25)

where < DH > is the ensemble average of forecast error and DH; is the individual

forecast error, the average value of standard deviation for South part of the North sea

during Nov. 89 is about 50 cm.



4 Determination of analytical autocorrelation func-
tion

Because of nonlinearity of correlation sample data as shown in Fig. 2, an analytical
function to fit such data usually has several adjustable parameters. Here a straight-

forward least-square error variance is used to fit desirable parameters. To this end, we

minimized difference E,

N
E= J(ﬁ S (RG@:) - r(@))?) (26)

=1

where r(z;) is a set of autocorrelation data calculated from Eq. (20), R(z;) is an
analytical function with several adjustable parameters, z; is separation between two

grid points of wave model, N is total number of sample data. After some trial and

error, we used the following correlation function:

R(z) = (A + B- sin(w,z))- exp(~¢-z), @7)

with the coefficients

A= (Sp)i ) (Sp);

B=1038- =04,6=.
S5, B=038 Aw=04,6=2%, (28)

The sample data used for empirical estimation is taken from hindcast and forecast
runs of two months (Nov. and Dec., 1989, total 136 individual runs). Fig. 3 shows the
analytical function and the sample auto-correlation data averaged over a subseparation
of 0.2 GONO grid point. As shown in Fig. 4, there is usually no sample data between
the analysis point and the nearby grid points. Data in a subseparation increases with
the distance from the analysis point. Two points for correlation analysis are GONO
grid points (11,9) and (8,25), the standard deviation errors between analytical function
and the sample data for those two points are 0.074 and 0.094 respectively. Since the
sample data of autocorrelation, as shown in Fig. 1, is quite scattered, the correlation

might be anisotropical. We tried an analytical correlation function with anisotropy

having the form,
R(z,0) = G (0,z) (A + B.sin(w,- z))- exp(—§ - z), (29)
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where

G(0,z) = cos* (w,- (0-6,)), (30)

where A, B and w have the same value as in Eq. (27), and 6 is direction counted from

the model north. In addition, we take
§1=0.165,0, = 1.75 ,w; = 0.32,&, = 0.16. (31)

The anisotropical function for four different directions is shown in F ig 5, Table 2 in-

dicates the improvement of accuracy obtained by using an anisotropical correlation

function.

5 Spectral properties of analytical correlation func-
tion

Equation (27) may be written by combination of two terms

R(z) = g(z)f(2) , (32)
where
9(z) = (A + Bsin(w, - 7)), f(z) = exp(—£ - z). (33)

Then, Fourier transform pairs may be denoted as:
9(z) <= G(v),f(z) <= F(w), (34)
and
R(z) <= S(w),S(w) < G(w)* F(w) .

Here * is convolution of two separated Fourier transforms. Fourier transform of g(x)

gives
G(w) = /g(x) ezp(—iw - z) dz , (35)

where boundaries of the integration extend to infinity, which leaves an open area to

determine the truncation length arbitrarily, and

w = 7w kfL, (36)



Here k is wave number and L is truncation length of correlation. Performing the

integration in Eq. (5.4) gives
G(w) = §(w) + iB-§(w + w,)/2 — iB 8w — w,)/2 . (37)

the fourier transform of damped exponential function is

F(w) = / f(z)- exp(—iw- z)dz = (v — iw)/(v + iw), (38)
and the fourier transform of correlation R(X) is the convolution
S(w) = Real/ Gw') F (w — w') duw' (39)
Al + B.(w + w,) B.(w - w,)

Tt T2 (@ wrw)?) 2B+ (= w))
The boundaries of the integration of the fourier transforms extend to infinity in Eq
(35) and Eq (38); however, the correlation fit to a set of sample data is restricted to
a truncation distance. It is obvious that no data is available outside this limitation.
Here, the Hamming window is used to impose this limitation:
H(z) = 0.54 + 0.46cos(z- w*), |z| < L, , (40)
where
w* = «/L,,, (41)

L,, is truncated length, its Fourier transform is
Q(w) = 0.54 §(w) + 0.236(w + w*) + 0.236(w — w*). (42)

The truncation spectrum S(w) may be obtained by fitting the actual spectrum through

this window by the convolution,

Lm
Srw)={ QW) S (w - w) dw'} (43)
={0.54.5(w) + 0.23.5(w — w*) + 0.235(w + w*)}.

From Eq. (34), it is possible to express the autocorrelation as the fourier transform of

the spectrum S(w),
R(z) = 51; [ S(w).eap(iw.z) du. (44)
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Since S(w) can be separated into odd and even terms, the above equation may be

expressed as an one-side integration:

R(z) = % / (Seven(w) - cos(wz) + Spaa(w)- sin(wz) Jdw . (45)

For zero separation z we have,
) 2
limmsco = / Sr(w) dw= R(0) = A, (46)

or integration of S(w) is exactly the auto-correlation at the analysis point. However,
the integration in Eq (46) represents spectrum between w and w+dw which contributes
to interpolation, the integral bounds is finite because truncation length can not extend
to infinity. This means that the integration of Eq (46) is always an approximation
to interpolation. The calculation of Eq. (46) indicated that a truncation length of 6
GONO grid points has good approximation to the interpolation.

6 Summary and Conclusion

In the least-square sense, the statistical method through which the spatial statistical
information of variable was incorporated provides an optimal estimation of correlation
or covariance used in sea wave data assimilation, without the need for assumptions of
spatial homogeneity, or isotropy. The only assumption is that the observation error is
random. The same spatial statistical properties for both forecast error and hindcast
error are essential for our estimation of correlation based on hindcast minus forecast
fields. An intuitive method was employed to determine the analytical function with
isotropy and anisotropy. The isotropical function may fit the sample data quite well
in sense of standard error, and the anisotropical function may improve the accuracy
of correlation at a distance to 6 GONO grid points. Beyond this, it has no much
effect because of exponential damped function. The sample data of correlation at
GONO point (11,9) (corresponding to middle area of The North sea) and point (8,25)
(corresponding to Norwegian sea) were used to verify the correlation functions. The
correlation of forecast error of sea waves appears positive and has large horizontal scale.
Usually, the positive definiteness of correlation is restricted to a limited area, and it

is reasonable to assume that there is no appreciable contribution outside the limited
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area. We used the Hamming window to restrict the spectrum to a finite range, and the
Fourier transform of correlation, or wave number spectrum, from which the accuracy
of interpolation is attributed to the different truncated lengths, was discussed. We
have found that a truncation length of 6 GONO grid points is a good approximation.
Because the forecast error of wind and wave are strongly correlated, the accuracy of

present scheme of wave data assimilation may be improved by employing a multivariate

interpolation as described in section two.
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Table 1:

Some statistical parameters of waves for 4 selected points, where N,N*, N~ SD and
ST in the first row represent total observation data, positive bias number, negative bias
number, rms error and scatter index, H is mean wave height. Hind., +12F and +24F
in the first column denote hindcast, +12 hours and +24 hours forecast respectively.
The unit of H, Bias and SD are in cm. Two months (October and November, 1989)
observation data and the corresponding forecast results are listed here.

N| H[Bias[SD[SI[N*[N- |

Euro
Hind. 871145 -33| 29|20 6| 82
+12F 871143 | -30| 3726 | 10| 73
+24F 871143 | -31| 47(33| 14| 64
IJmuiden
Hind. 871152 -23 | 3422 15[ 71

+12F 821150 | -18| 44|29 21| 61

+24F 771150 | -21| 54|36 | 24| 53

K13 )
Hind. 8 | 171 -26| 26| 15 8| 79
+12F 8170 | -19| 40|23 | 14| 64
+24F 78171 | -20| 56|33 19| 58
Mike
Hind. 67 | 101 6| 14(14| 21| 46
+12F 671101 | -13| 28|28 20| 47
+24F 671101 | -13| 34|34 | 24| 43
Average
Hind. 82142 -22 26|18 13T 70
+12F 80141 -20| 31(27| 16| 61
+24F 171141 -17| 48 (34| 20| 55
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Table 2:

Comparisons of standard errors between the sample correlation data and analytical
correlation functions with isotropy and anisotropy, where k, R1(x), R2(x) represent
direction bins, the standard errors of isotropical function at GONO point (11,9) and
point (8,25); R1(z,6) and R2(z,0) correspond to the stardard errors of anisotropical

function in those two points. The last column denote average errors, all value are mul-
tiplied by 100.

k= 1] 2[3[4[5] 6] 7[8] 9101112 Ave
Ri(x) [ 5] 4[2]4[7[ 5[ 6[5] 3|13[2312] 74
R2(x) [10[16[2]5(3[10[13]5]14[18] 7| 5] 94
Rl(z,0) | 5] 5[2[4[7] 6] 7|8] 7]10]11] 6] 6.0
R2(z,0) [ 5[12(3[5(3[11|14]5] 9]10]14] 8] 82
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Fig.4.GONO grid points and the positions two points (circled) used
for analysis of correlation function,the line with arrow marks the

distance from the analysis point.
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Fig.5. Analytical function of anisotropical correlation,the function

is plotted for four different directions. The representation of

coordinates is the same as indicated in Fig.2.



