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Summary and conclusions

In this study we discuss the behaviour of large continental
ice sheets under various climatic conditions. We consider ice
sheets that behave perfectly plastic, i.e. their shape is para-
bolic and depends only on their size, no matter how the mass
balance varies in space. In this case it is possible to study
the feedback between ice-sheet height and mass balance with
analytical tools, as was done first by Weertman (1961a).

The analysis suggests that three characteristic

situations exist ( ® means order of magnitude):

(1) Warm climatic conditions: one stable equilibrium
solution exists, namely L=0 (L is ice-sheet size

in meridional direction).

(ii) Moderate climate conditions: three equilibrium
solutions exist: L=0 (stable), L =200 km (unstatle)
and L= 2000 km (stable).

(iii) Cold climatic conditions: only one equilibrium

solution exists: L = 3000 km, which is stable.

Apparently, the ice sheet shows hysteresis. This implies that

ice sheets probably respond strongly nonlinear to quasi-periodic

insolation variations.

Analysis of deep-sea core V12-122 (Imbrie et al., 1974) shows uni-modal
distributions of parameters directly related to sea-surface
temperature, and bimodal distributions of oxygen isotope ratios,

which are related to ice volume on earth. This fact strongly

supports the theoretical results of this study.



Introduction

Of the various theories put forward to explain the quaternary
ice ages, the large sensitivity of ice caps to external (=
atmospheric) conditions has never got much attention. Bodvars-
son (1955) was the first to mention explicitly that the coup-
ling between surface elevation and annual ice-mass balance
substantially enhances the sensitivity of continental ice
sheets. Weertman (1961a, 1961b, 1964, 1976) investigated this
point in a quantitative, but crude, way. He considered two-
dimensional ice sheets (height and latitude) and parameterized
the mass budget by prescribing a snow line that separates
regions of constant ablation and constant accumulation. Weert-
man found that the equilibrium size was very sensitive to the
values of ablation and accumulation.

In this study we will carry out an analysis similar to
Weertman's studies, but we will use a more realistic prescrip-

tion of the mass balance.

Mass budget and ice-sheet profile

We start our discussion by formulating the annual ice-mass

balance G. Observations have shown that G increases with height

and latitude (Charlesworth, 1957). For the height dependence we write
G = a(h-E) - b(h-E)° (1)

where h 1is height above sea level and E 1is the height of
the equilibrium line (defined by G = O). The constants a and b

are positive, so eq. (1) describes a parabola with the top above

the equilibrium line. Requiring that this top is at h-E=1500 m,
and the corresponding mass balance 0.5 m/y, gives a\=0.'732n.‘10—3 y_1
and b=0.268¢10—6 (my)~ 1. 11 h-E » 1500 m, we set G=0.5 m/y,

see Fig. 1.
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Fige 1. Height-dependence of the annual mass balance G.
We now include the latitudinal dependence of G by prescribing

E = YXx+86 (2)

Here, x 1is the distance along a meridian in the southward
direction from 70° N. So x measures approximately the distance to
the polar sea. %X is the slope of the lines of equal mass balance.
The point where the equilibrium line intersects sea level is given
by P=-®/x (climate reference-point). Fig. 2 gives an example of the
distribution of G described by eqs. (1) and (2). X has been set

at 0.001, The climate reference-point lies 1000 km north of 700 N3
this corresponds to conditions slightly warmer than at present.

The shape of a continental ice sheet is determined by its
mechanics, but the direct driving force is of course its mass
balance. An ice sheet grows/shrinks when the mean mass balance
is positive/negative. We thus may learn a lot if we investigate

how the mass balance of an ice sheet depends on its size. In

order to find the total mass balance, we have to integrate G(h,x)
along the surface of the ice sheet. So if we want to derive a

functional relationship between the total mass balance and the
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Fig. 2. Parameterization of the mass balance G.
Constants used: a=0,7321* ‘IO-3 y-1'

]

b=0.268 * 107 (my)~"; x = 10™3; @ = 1000.

ice-sheet size (or volume), we need a unique relation between jce-
sheet profile and gize that does not depend on the variation
of G over the sheet. Such a unique relation exists if we assume
that the ice sheet behaves perfectly plastic. For a discussion
on perfect plasticity, see Paterson (1969) .

The profile of a perfectly plastic ice sheet on a horizontal

bedrock is given by

H(x) = o[3L-|x-4L0| (%)

Here H(x) is the height of the sheet, L its size and o a con-
stant that depends on the yield stress of ice and determines the
height to width ratio. In this study we use o = 2.5 m%, which
means that a sheet with L =2000 km has a maximum height of 2500 m.
Eq. (3) follows directly from the requirement that the shear
stress at the bottom equals the (constant) yield stress every-

where. Fig. 3 shows a perfectly plastic ice sheet. In the case



cf equilibrium, there is no horizontal flux of ice through
the centre of the sheet. This implies that we can find
the size of the sheet by making up the mass balance over
the southern half.
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Fige 3. A perfectly plastic ice sheet of size L.
Locations where the ice-mass discharge is
largest are indicated with heavy arrows.
There is no mass transport through the
centre of the sheet.

Inserting (2) in (1) yields for the mass balance:

G(x,h) = ah - axx - a® - bh° - bx2x2 - be® -

2bXOx + 2byxhx + 2b6h . (W)

If we now substitute the height of the ice sheet H(x) for h
and integrate from x = 3L to x = L, we obtain for the mass

balance averaged over the southern half of the sheet:

%{G(x)dx = A, + A2L’} + A5l + AuLB/z + A5L2 y (5
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where A

-68(a + bO)

A, = 4710 (a + 206)

Ay = -0.25 bo® - 0.75% (a + 2b8)
Ay = 0.666 ba X

A = =0.583 bx°

Evaluation of (5) for a given set of constants allows us to
determine the equilibrium size(s) of an ice sheet: we simply
have to require G*= 0. Whether an equilibrium solution is
stable depends on 3G*/dL., If 9G*/dL > O, the equilibrium
solution is unstable; if 9G*/0L < O, it is stable.

Although the expression for G*(L) looks rather complicated,

it is not, as we will see in the subsequent sections.

Mass budget and equilibrium solutions

In the evaluation of (5), difficulties may arise if h-E becomes
larger than 1500 m for any x > #L. This is a consequence of
the fact that we did not include the conditions G = 0.5 m/y if

h-E > 1500 m in the computation of the total mass balance. 1In

practice however, this plays a role for extremely large ice sheets

only (L > 3000 km or so, depending to some extent on the value
of x ). In the following, the values of a, b and ¢ are equal to

those already mentioned, unless stated otherwise.

Fig. 4 shows how G* depends on the ice-sheet size. It
rapldly increases with L, reaches a maximum and then decreases
steadily. This type of behaviour was found for all kind of sets
of constants (within their realistic range), so the conclusions
to be drawn from Fig. 4 have general value.

We first note that the influence of © is very clear:
changing © , which may be interpreted as varying climatic
conditions, shifts the curve up and down while its shape is

hardly affected. Since equilibrium solutions are found by
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Fig. 4. G* as a function of ice-sheet size L for three
values of ®. Equilibrium solutions are given
by the intersections of the curve with G*= O
(dashed line).

equating G* to zero, the maximum number of solutions is two.
In the case that © = -250 m, the climatic reference-point P
(the point where the equilibrium intersects sea level) is
situated 250 km from the polar sea (in southward direction).
Only one equilibrium solution exists: L = 2200 km. This
solution is stable because 3G*/dL < O here., If © = 250 m,
i.e. if the climate reference-point P is situated in the polar
sea, Fig. 4 reveals two solutions: a small sheet which is un-

stable, and a large sheet which is stable.

At this point we note that for © >0 (corresponding to

P<O0), L =0 is a stable solution, which is not revealed by
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Fig. 4. It directly follows from the fact that in this case

G* is always negative for x 2> O.
Fig. 4 also suggests that some ®, exists, such that for

®:>G°, L = 0 is the only solution. In this case the top of

the G*-curve is below the line G* = O,

Summarizing, we may distinguish three cases:
(1) e ©, : the only solution is L = O, which is stable;

(ii) 8, ,<8 K0 : three solutions exist: L = O (stable),

a small sheet (unstable) and a large sheet (stable);

(iii) 8 <O : only one solution exists: a large ice sheet,

which is stable.

Only in case (ii) two stable solutions exist - here it depends

on the initial state to which solution the ice sheet will

grow. In other words, the present analysis shows that we have
to do with hysteresis. This is qualitatively shown in Fig. 5.

The cases discussed above are indicated.

>

L > PE-O/L)

Fige 5. Illustration of the analysis of equilibrium
solutions. Stable solutions are indicated

with so0lid lines. The dashed line indicates
unstable solutions.
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In order to arrive at a more quantitative solution diagram,
we could compute the zero's of G*(L) for various values of © .
Because G*(L) is in fact a polynomal of fourth order, this has
to be done with a numerical method. On the other hand, the fact
that (for realistic constants) not more than two zero's occur
suggests that a quadratic equation might be sufficient to deter-

mine the solutions. We turn to this point in the next section.

Simplification of G*(L)

From (5) we see that G* would be quadratic in L if b would be
zero, i.e. if the mass balance is prescribed as a linear func-
tion of height. Some sample calculations were carried out to
see whether this makes much difference. It appeared that the
shape of the G*-curve is not affected, but the points where
G*= O shift somewhat. In view of the uncertainties in other

parameters, in particular in X , it seems justified to prescribe

G linearly in height.

We thus rewrite G as

G = a(x-P) + Bh , (6)

where P is the climate reference-point again, and « and 3 are
6 -1 -3 -1
y 4B =10 ¥y e

The mass balance averaged over the southern half of the sheet

constants (orders of magnitude: ® == -10"

now becomes

. _ 3
G*(L) = B,I + B2L + BBL . (7)

where B1 = - abP
0.4714 Bo
0.75 a

We first observe that variations in P shift the G*-curve up
and down without affecting its shape. Therefore, we consider
the case P = O, Fig. 6 shows G*(L) for three values of a .

Apparently, the stable equilibrium solution is very sensitive
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Fig. 6. G*(L) for three values of @. P has
been set to zero.

to ol (determining the slope of the equilibrium line). If

this slope is small, stable equilibrium solutions become

very large.

Computation of the solution diagram

The equilibrium solutions are found by equating G* to zero.
Thus from (7) we have

3 _
B1 + B2L + BBL = 0 (8)

After squaring, this equation can be solved to give

e
2 \J 2
B, - 2B,B, % B,\[BS - 4B B

L - (9)

1,2 >
2B
3
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2
No real solutions of L1 5 exist if B2 - 4BqB3'< 0. In terms
]

of a, P, 0 and P this condition becomes

P < - 0.741 cr2 Ba/ a2 . (10)

We call the right-hand side of (10) Po’ the critical point.
Note that Po is negative, i.e. it lies in the polar sea. If
P < P, thus if P lies north of the critical point, (8) gives
no solutions. If P> P s (8) gives two solutions. It may be
shown that those solutions are always positive. From Figs. 4
and 6 we know that if P > 0, only one solution exists. The
reason that (9) gives two solutions in this region simply is
the fact that we squared (8).

We are able now to construct a solution diagram. L,]'2
are easily computed from (9) and furthermore we know that
L=0 is a stable solution if P< O. Fig. 7 shows solution
diagrams for three values of a. Stable solutions are given
with solid lines, unsfable solutions with dashed lines.

Critical points are indicated with black spots.
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Fig. 7. Solution diagram for perfectl plastic ice sheets.
Values of constants:g =2.5 m?, B =10~ y~1,
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From Fig. 7 we see that ice sheets of considerable size
are possible even if P is situated a few hundred kilomaters
north of the northern coast of the continent. If we imagine
that climatic variations shift P nérth- and southwards in a
smooth way, the response of ice sheets may be quite complicated.
Or, in other words, the response of ice sheets to regular
insolation variations may have a strong nonlinear character.
In the following section we will make some inferences on

this point.

6. Inferences.
zaterences.

The fact that the ice-sheet behaviour is characterized by
hysteresis in the range of climatic conditions that prevailed
during the last million years or so is very important.

It results from the fact that the major continents in the
Northern Hemisphere are bounded in the north by the polar sea.
Weertman was the first to recognize that this configuration gives
raise to the appearence of two preferred states: no ice sheet
and a large ice sheet. Thus, if the time scale of ice-sheet
growth and decay is not much larger than that of the forcing
of the climate system (presumably variations in the earth's
orbit), a frequency distribution of ice volume on earth

should have a somewhat bimodal shape. With the palaeoclimatic
data available at presnt, this point can be verified.

Fig. 8 shows frequency distributions of wintertime sea-
surface temperature in the Carribean (uppper part) and of 6018,
which measures the total ice volume on earth. Variations in
this volume are mainly determined by variations in the
Fennoskandian and Laurentide sheets. Without doubt, those
distributions show significant differences.

The sea-surface temperature distribution resembles a
Gaussian distribution. This may be explained by the roughly

linear response of sea-surface temperature to insolation
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variations (as for example modelled by simple energy-balance
climate models). The frequency distribution of the ice-sheet
volume, however, shows a bimodal structure in accordance with
our discussion. The observational data thus lend strong
support to the validity of our results.

Summarizing, we conclude that the present way of including
the feedback between ice-sheet height and mass balance reveals
a very essential element of the climate system, namely,

a cryosphere with two preferred modes.
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